South

SOUTH PENINSULA HOSPITAL REQUEST FOR PROPOSAL

Exterior Lobby Door Replacement
Issued: 02/13/23

1. Overview

South Peninsula Hospital (SPH) is seeking a vendor to replace the exterior lobby door. The purpose of this Request for Proposal (RFP) is to solicit responses from competent and experienced vendors that are capable of providing the services as specified herein in a prompt, cost effective, and efficient manner.

2. Inquiries

Questions regarding this RFP may be directed in writing to Harrison Smith, Facilities Manager, at hsm@sphosp.org. All emails must identify the RFP title in the subject line and include the contact information for the person submitting the question. Questions may be submitted as needed until 5:00pm Alaska Standard Time (AKST), March 3, 2023.

SPH will review the submitted questions and respond to all inquiries in writing by replying via email to all interested vendors. Responses will provide the questions received and the accompanying response. This will ensure all potential vendors receive the same information.

3. Background Information

SPH is a full-service hospital serving the Southern Kenai Peninsula, licensed for 22 medical beds and 28 nursing home beds, primarily located at 4300 Bartlett St., Homer, AK 99603, with various satellite locations located in the greater Homer area.

4. Proposal Submission Requirements

All vendors interested in submitting a proposal in response to this RFP must adhere to the following requirements. Failure to do so may result in SPH deeming the proposal to be non-responsive and therefore not eligible for consideration.

4.1 Proposal Submittal Items

Vendors must only submit one proposal, follow the format outlined below, and clearly identify each of the following four criteria within the submittal.
a) Cover Letter - submit a cover letter on company letterhead that includes the following:

1. The company's legal name and contact information.
2. An overview of the company's qualifications and experience relevant to the scope of work defined herein.
3. The letter must be signed by an authorized company representative and include that person's contact information.
b) Scope of Work - submit a written, detailed description of how section 5 Scope of Work will be accomplished, addressing all items of relevance within that requirement. Please refrain from using marketing information in this part of the proposal submittal.
c) Price - submit a written price proposal to provide the good(s) or service(s) as specified herein. The proposed price must include all of the vendor's costs associated with providing the good(s) or service(s) as called for within this RFP and including, but not limited to, wages, administrative overhead, equipment, materials, travel, transportation, lodging, and other similar costs unless stated otherwise. No other costs will be considered for payment.

All proposals will become the property of SPH and may be returned only at the option of SPH. Any information marked as proprietary or confidential will be held in confidence to the greatest extent possible.

4.2 Walk-Through

Vendors are encouraged to schedule a pre-bid walk-through prior to the submission of an RFP response. Walk-throughs can be scheduled with the Facility Manager, Harrison Smith, by emailing hsm@sphosp.org.

4.3 Proposal Submission Deadline

To be considered, a complete proposal package must be received by SPH by the deadline via either of the following methods:
a) Hand delivered or mailed to: South Peninsula Hospital

Attention: Royal Brown
Director of Material Management
4300 Bartlett St.
Homer, AK 99603
b) Electronically transmitted to: rbrown@sphosp.org

The deadline for submission is 5:00 PM Alaska Time, March 10, 2023. Any proposals received after the deadline may not be accepted. Proposals sent via email should be sent as a single PDF document format, with the RFP title noted in the subject line.

4.4 Proposal Preparation Cost

SPH shall not be responsible for any costs associated with preparing and/or submitting a proposal in response to this RFP, in any manner or for any reason.

4.5 Proposal Validity

A vendor's price proposal will remain valid for 30 calendar days from the RFP submission deadline or until an award is made to the successful vendor, whichever is sooner. No price proposal will be accepted if marked "price prevailing at time of delivery", "estimated price", or something similar. All price proposals must be in US dollars.

5. Scope of Work

See attached specifications, including:

- Commercial Folding Door Spec Sheet
- Plan Area
- Mechanical, Electrical, and Structural Drawings and Specifications
- Finish Schedule
- Various As-Built Drawings and Specifications
- Opener Specifications

Notes:

This request is for the exterior door only.

SPH has updated the specifications to include a Besam SW200i-Fold Automatic Commercial Folding Door or equivalent.

SPH will frame to fit the replacement door.

SPH will be responsible for all wall and floor repairs, including paint, carpet, flooring, and base.

6. General Requirements

6.1 Term of Service

The agreement resulting from this RFP shall be effective from the date of execution of the agreement through the completion of services. In no event shall services under the agreement extend beyond December 31, 2023. In the event the work is not completed within this timeframe, SPH, in its sole opinion, may determine the vendor to be in breach of the terms of the agreement.

6.2 RFP Modification

SPH reserves the right to:
a) Modify or otherwise alter any or all of the requirements herein. In the event of a modification, vendors will be given an equal opportunity to modify their proposals as identified in writing by SPH.
b) Reject any proposal not adhering to the requirements set forth within this RFP, either in whole or in part.
c) Reject any or all proposals received.
d) Terminate this RFP at any time, without reason.

6.3 Order of Precedence in the Event of a Conflict

If an agreement is awarded, all terms and conditions herein shall be incorporated into the award along with the vendor's proposal. Any change to the agreement must be through a written
amendment agreed upon by both Parties. In the event of a conflict between the RFP and the vendor's proposal, the more stringent language shall apply.

6.4 Subcontracting

The vendor must disclose to SPH the use and identity of all subcontractors it uses in carrying out the requirements herein. SPH reserves the right to approve all subcontractors if it so chooses. The vendor is solely responsible for the satisfactory performance of and compensation to any and all subcontractors.

6.5 Insurance

The vendor shall have, maintain, and provide proof of Commercial General Liability Insurance, with coverages of $\$ 1,000,000$ each occurrence and $\$ 3,000,000$ in aggregate, and Workman's Compensation Insurance, in addition to any applicable insurance required by the State of Alaska or the vendor's primary state of location. The vendor must provide SPH with proof of the insurance required herein, with South Peninsula Hospital as additional insured. The vendor shall be financially responsible for all deductibles, costs, and self-insured retention's and/or selfinsurance required herein.

6.6 Indemnification

Except in the case of the sole negligence or willful misconduct of SPH, the vendor shall indemnify, defend and hold harmless SPH, and SPH's officers, agents, and employees from and against any and all liability, claims, damages, losses, expenses, actions, attorney fees and costs and lawsuits whatsoever (including without limitation all claims involving damage to real or personal property, civil rights claims, or claims of infringement of a patent, copyright, trade secret or trademark) caused by or arising out of the performance, acts, or omissions under this RFP by the vendor or any of its officers, agents, representatives, employees or subcontractors or arising from or related to a failure to comply with the requirements herein, and/or applicable state or federal statute, law, regulation, or rule.

6.7 Title 36

Requirements for Title 36 of the Alaska Statutes are NOT applicable to this project.

7. Price and Payment

7.1 Proposal Price

The vendor must submit a written price proposal to provide the good(s) or service(s) as specified herein. The proposed price must include all of the vendor's costs associated with providing the good(s) or service(s) as called for within this RFP and including, but not limited to, wages, administrative overhead equipment, materials, travel, transportation, lodging, and other similar costs unless stated otherwise. No other costs will be considered for payment.

7.2 Payment

The vendor shall be paid for actual work completed in accordance with the requirements herein and the accepted price proposal. The total amount to be paid to the vendor shall not exceed the
vendor's quoted amount, unless otherwise specifically agreed to in advance with supporting justification and in writing by both parties.

Payment to the vendor is contingent on the vendor delivering a bill or invoice to the SPH on a monthly basis. SPH retains the right to require additional documentation to support the submitted invoice. SPH will provide payment to the vendor within 30 calendar days of acceptance of the invoice.

The vendor shall provide the following information with each monthly invoice:
a) Identification of billing period;
b) A statement describing the actual work completed with sufficient detail to reconcile the charges against the work performed and/or work product received by the SPH;
c) Total cost billed for the billing period;
d) Date invoice was submitted;
e) Entity name and contact information; and
f) Name of authorized person originating or submitting the billing for the entity.

Submit invoices to:

Accounts Payable
South Peninsula Hospital
PO Box 1017
Homer, Alaska 99603

8. Conflict of Interests

The Vendor certifies that to the best of their knowledge there is no conflict of interest involving a South Peninsula Hospital official or employee, including:
A. No South Peninsula Hospital employee's immediate family member has an ownership interest in Vendor's company or is deriving personal financial gain from this Agreement.
B. No South Peninsula Hospital official or employee's immediate family member has an ownership interest in Vendor's company or is deriving personal financial gain from this contract.
C. No retired or separated South Peninsula Hospital official or employee who has been retired or separated from the organization for less than one (1) year has an ownership interest in Vendor's company.
D. No South Peninsula Hospital official or employee is contemporaneously employed or prospectively to be employed with the Vendor.
E. Vendor hereby declares it has not and will not provide gifts or hospitality of any dollar value or any other gratuities to any South Peninsula Hospital official or employee to obtain or maintain an Agreement or similar contract.

Vendor must disclose any relationship with any South Peninsula Hospital official or employee.

9. COVID-19 REQUIREMENTS

Vendor agrees to follow all policies, procedures, and infection control guidelines of SPH related to Covid19.

10. Evaluation and Selection

Proposals will be evaluated by SPH staff based upon the responsiveness to the submission requirements described in Section 4, and in any other manner deemed appropriate by the SPH to determine the proposal most advantageous to the SPH, including at least three references for similar projects and/or experiences in Alaska, as well as information pertaining to key personnel and equipment.

SPH reserves the right to waive informalities and minor inaccuracies. SPH reserves the right to reject any and/or all proposals which it deems to be not in the best interests of SPH and to proceed with the next proposer or to utilize an entirely different process at any time during the process.
(thawrmatatyon)

AUTOMATIC COMMERCIAL FOLDING DOORS

AUTOMATIC COMMERCIAL FOLDING DOORS

Besam SW200i-Fold Automatic Commercial Folding Door

Convenience for Small Entrances

When space is limited, look to automatic commercial folding doors for maximum door opening. Whether you choose two or four-panel, you are assured of an automatic entrance package that provides convenience and accessibility in the smallest of environments.

SOUTH PENINSULA HOSPITAL LOBBY DOORS REPLACEMENT 4300 BARTLETT ST., HOMER, AK 99603

MECHANICAL
ELECTRICAL
STRUCTURAL

215 LAKIF NORTHERN ELECTRICAL ENGINEERING CONSULTING 410 FOXLAR CR. ANCHORAGE, AK 99507 (907) 382-1455 EMAll- james@northern.engineering

GENERAL NOTES

THE CONTRACTOR SHALL PROVIDE ALL MATERALS AND LABOR NECESSARY FOR A COMPLETE AND OPERABLL
SYSTEM. THE DRAWINGS ARE PARTY DIAGRAMMATIC NOT NECESSARIY SHONIG SYSTEM. LOCATONS OF RULLINING DETALLS. IT IS THE RESPONSIBLITY OF THE INSTALLER TO COORDIINATE THER WO WTHH OTHE TRADES AND FIELD COONDITONS. ANY DEVIATIONS FROM THE PLANS SHALL BE BROUGHT TO THE
2. ALL WORK SHALL BE DONE IN ACCORDANCE WITH THE LLTEET ADOPTED EDTTION OF THE INTERNATIONAL BUILDNG CODE (IBCC), NTERNATIONALMECHANCAL CODE (IMC), UNIFORM PLUMBING CODE (UPCC) ITTERNATIONAL
FIRE CODE (IFC), INTERNATIONAL FUEL GAS CODE (IFGCC), AND THE NATIONAL ELECTRIC COD (NEC) APPLICABLE
3. ALL EQUPMENT LISTED IS REPRESENTATVE OF THE STANDARD OF QUALITY AND PERFORMANCE REQUIRED. OR
EQUALIT SUBSTITUTONS WLLL BE CONSIDERED IF THE SUBSTTUTES ARE SHOWN TO BE EQUAL OR BETTRR EQUALI SUBSTITUTIONS WILL BE CONSIDERED IF THE SUBSTITUTES
QUALTYY, INCLUDNG EFFICIENCY OF PERFORMANEE, SIZE AND WEIGHT.
4. ALL MATERIALS SHALL BE NEW AND UNUSED, INSTALLED IN ACCORDANCE WITH THE MANUFACTURER'S
DIRECTIONS AND IN THE BEST PRACTICE OF THE CRAFT. OBTAIN OWNER'S APPROVAL OF ALL PRODUCTS PRIOR

5. THE CONTRACTOR SHALL SUBMIT PRODUCT DATA COMPILED IN A BOUND NOTEBOOK FOR ALL SYSTEMS. AL PRODUCT DATA SHALL BE SUBMITTTD AT ONE TMME, PARTIAL SUBMITTALS WILL BE RET
6. PROVIDE THE OWNER WTTH AN OPERATING AND MANTENANCE MANUAL, TO INCLUDE MANUFACTURERS
SPECIFICATINS, OPERATING AND MAINTENANCE INSTRUCTIONS, WARRANTY INEORMATON ON
 FOR SPARE PARTS AND SERVICE
7.
8. WHEN WORK NOT SPECIFICALLY CALLED OUT IS REQUIRED TO COMPLETE THE PROJECT, IT SHALL BE OF THE
9. THE CONTRACTOR SHALL TAKE ALL NECESSARY PRECAUTIONARY MEASURES TO PROTECT THE PUBLIC AND ADJACENT PROPERTIES FROM DAMAGE THROUGH.
FOR DAMAGES INCURRED DURING CONSTRUCTION.
10. CONTRACTOR SHALL ESTABLISH AND VERIFY ALL OPENINGS AND INSERTS FOR MECHANICAL, ELECTRICAL, AND -
11. CONTRACTOR SHALL PROVIDE ALL NECESSARY TEMPORARY BRACING, SHORING, GUYING, OR OTHER MEANS TO
AVOID EXCESSIVE STRESSES AND TO HOLD STRUCTURALELEMENTS IN PLACE DURING CONSTRUCTION.
12. ALL COMPONENTS AND EQUPMENT SHALL BE INSTALLED PER MANUFACTURE'S PRINTED RECOMMENDATIONS
13. VERIFY ALL ROUGH OPENING SIZES AND DETALLS FOR DOORS, WINDOWS, EXHAUST FANS, AND VENTS PRIOR TO
cont
.
15. INSURE ALL CONSTRUCTION MEETS THE REQUIREMENTS FOR ADAAG COMPLANCE. THIS SHALL INCLUDE DOOR SIZE, THRESHOLDS, DOOR PULLS, DOOR HARDWARE AND GRAB BARS WHEERE APPLCABELE. PROVIDE

	$\begin{aligned} & D^{2} \\ & N \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$			SOUTH PENINSULA HOSPITAL EAST ADDITION \& ALTERATIONS - PHASE 1 HOMER, ALASKA FINISH SCHEDULE	K M D KAPLAN McLAUGHLIN DIAZ ARCHITECTS	

LIGHTING FIXTURE SCHEDULE						
ker	LAMPI	MPS	DESCRPPT	Mounting	MANUFACTURER'S NUMBER,(SEE NOTES 1-10, 15)	
	No	TPE				
A/70	2	F32WT8	2'X4' $\operatorname{PREMUUM}$ SPECIFCCATION GASKETED FLUORESCENT TROFFER WTH STEEL HOUSING AND DOOR, AND 0.125" THCK ACRYLC LENS.	$\begin{aligned} & \hline \text { CEILING, } \\ & \text { RECESSED } \end{aligned}$	LITHONA \#2SP-2-32-A12125-120-GEB10IS	
A/100	3	F32Wr//Px	2'x4' PRemuM Specification gasketed fluorescent troffer wit steel housing and door, AND $0.125^{\text {" THICK ACRYLC LENS. }}$	$\begin{aligned} & \text { CELING, } \\ & \text { RECESSED } \end{aligned}$	LITHONIA \#2SP-3-32-A12125-120-GEB10IS	
A/130	4	F32WT8/PPX3	2'X4' $\operatorname{PREMUUM}$ SPECIFCACATON GASKETED FLUORESCENT TROFFER WTHH STEEL HOUSING AND DOOR, AND $0.125^{" 1}$ THICK ACRYLC LENS.	CEILING,	LITHONIA \#2SP-4-32-A12125-120-GEB10IS	
B/100	3	F32W7//PP	$2^{\prime} \times 4^{\prime}$ HIGH PERFORMANCE PARABOLLC FLUORESCENT W/ $3^{\prime \prime}$ DEEP LOUVERS, <10\% THD INSTANT START ELECTRONC BALLAST.	$\begin{aligned} & \text { CEILING, } \\ & \text { RECESSED } \end{aligned}$	LITHONIA \#2PM3N-G-B-3-32-18LD-120-GEB10IS	
B/13			NOT USED			
c/70	2	F32w\%/	Electronc ballat.	CELING, RECESSED	LITHONIA \#2AV-G-2-32-MDR-120-GEB10IS	
c/100	3	F32WT8/SP	2'x4' DRECT/INDIRECT FLUORESCENT W/ PERFORATED METAL SHLELD, <10\% THD INSTANT START ELECTRONIC BALLAST.	$\begin{aligned} & \text { CEELING, } \\ & \text { REECSESD } \end{aligned}$	LITHONA $\# 2 A V-6-3$	
D/40			Not use ${ }^{\text {d }}$			
Ex1			DIE-CAST ALUMINUM EXोI SIGN W/ NICKEL-CADDIUM BATERY, W/ SINGLE STENCIL FACE, GREEN DIFFUSE LED LEETERS. UNVERSAL MOUNTING AND DIE-CAST ALUMINUM CANOPY WHERE REQUIRED		2	
Ex2		Led	DIE-CAST ALUMINUM EXIT SIGN W/NICKEL-CADMIUM BATTERY, W/DOUBLE STENCIL FACES, GREEN DIFFUSE LED LETIERS. UNIERSAL MOUNTING AND DIE-CAST ALUMINUM CANOPY WHERE REQUIRED.	CEILING, SURFACE OR WALL	$\begin{aligned} & \begin{array}{l} \text { IITHONA } \\ \text { \#LLE-S-W-2-6-120/277-ELN } \end{array} \end{aligned}$	
F/70	2	F32WT8/		CELING, SURFACE SEE NOIF IT	$\begin{aligned} & \text { LITHONI } \\ & \# L B-2-32-120-\mathrm{GEB} 10 \mathrm{IS} \end{aligned}$	
F/130	4	F32Wİ	4' FLUORESCENT WRAPAROUND W/ <10\% THD INSTANT START ELECTRONIC BALLAST, ACRYLIC PRISMATIC DIFFUSER.	CEILING, SURFACE	$\begin{aligned} & \hline \text { LITHONIA } \\ & \text { \#LB-4-32-120-GEB } \end{aligned}$	
6/20			NOT USED			
	F266T					
6/30						
6/40	1	$\begin{array}{\|l\|} \hline \text { F32TRT/835 } \\ \text { /A/4P/EOL } \\ \hline \end{array}$	6^{n} COMPACT FLUORESCENT DOWNLIGHT W/LOW BRIGHTNESS REFLECTOR, <10\% THD INSTANT START ELECTRONC BALLAT, SEE NOTE 12 .	$\begin{array}{\|l\|l\|} \hline \text { CEE } \\ \text { RECC } \end{array}$	LITHONIA \#AFV-32TRT-6AR-120-GEB10IS	
H/70	2	${ }^{\text {F32W7//Px } 35}$	4^{\prime} HEAYY-DUTY FLLORESCENT INDUSTRAL TURRET WTH 10% UPLIGHT, STEEL HOUSING, AND WRE GUARD.	CEILING, SURFACE	LITHONIA \#AF10-2-32-120-GEB10IS	
1/70						
J/40						
k/40		F32wT//SPX		4^{4} FLUORESCEENT UNDERCABANE FXXUUEE W/ 75\% TRANSMISSOON TRANSLUCENT OPAL DIFFUSER AND HIGH POWER FACTOR RAPID START ELECTRONC BALLAST.	UNDERCABINET, SURFACE	$\begin{aligned} & \text { ALKC0 } \\ & \# 332 / E C B / R S W \end{aligned}$
L/240			Not USED			
M/70	2	${ }^{\text {F2578/SPX35 }}$	INTEROR WALL SCONCE, ALUMINUM	$\begin{array}{\|l\|l\|} \hline \text { WALL } \\ \text { NOFE } \end{array}$	COOPER LIGHTING \#605-37-T8/2/25-120-NA	
N/60			NOT USED			
0/40	1	$\begin{aligned} & \mathrm{F} 32 \mathrm{TBX} / 835 \\ & / / A / P \mathrm{P} / \mathrm{EOL} \end{aligned}$	$9{ }^{\text {a Compact }}$	$\left\lvert\, \begin{aligned} & \text { CELINGGS } \\ & \text { RECESSD } \end{aligned}\right.$	LTHOONA HLCFV-32TRT-9-DOL-120-ESICF	
P/100	1	MXR100 /C/U/MED	METAL HALIDE DOWNLIGHT W/ ONE-PIECE, HYDROFORMED, ANODIZED, ALUMINUM REFLECTORS AND RUGGED, HEAVY-GAUGE, LIGHTWEIGHT, ALUMINUM HOUSING. SEE NOTE 18.	CEING,	LITHONIA \#KPS-100M-R5-120-CR-SCWA	
Q/30	1	F26TBX/SPX35		CELING, PENDANT SEE NOTE 15.	$\begin{aligned} & \text { COOPER LIGHTING } \\ & \# 422-\mathrm{CFL} / 1 / 26-120 \mathrm{~V}-\mathrm{MW} \end{aligned}$	
R/50	${ }^{1}$	${ }^{\text {OSOMNR16C }}$	SEMI-RECESSED, LOW VOLTAGE DOWNLGHT W/ HAND-POURED GLASS DIFFUSER, FULLY RECESSED HOUSING AND UUNCTON BOX.	$\begin{aligned} & \text { CEILING, } \\ & \text { RECESSED. } \end{aligned}$		
s/100	1	$\left.\right\|_{/ \mathrm{SBF} / \mathrm{XL}} ^{\mathrm{LU100}}$		BOLARD	LITHONIA \#KB-8-100-CYA-208	
//40		${ }^{\text {F32w }}$	5 $48^{\prime \prime}$ fluorescent STRP W/ <10\% thd nstant start electronc balast.	SURFACE COVE UPLIGHT	LTHONIA \#C-132-120-GEB10IS	
T/200	6	32W7//PP	2'X4' FLUORESCENT SURGICAL TROFFER W/ ASYMMETRIC/SYMMETRIC LENS, RADIO SUPRESSORS, AND SINGLE LAMP INTERIM BATTERY BACK-UP. MATCH CIRCUIT VOLTAGE. SEE NOTE 1.	CEILING, RECESSED	$\begin{aligned} & \text { ALKCO } \\ & \# S T B 240-1-X-C E N-1 \end{aligned}$	
U/150	1	$\underset{\substack{\text { Liv150/SL } \\ / s B y / M L}}{ }$	HIGH PRESSURE SODIUM SEMI-SPHERCCAL AREA LLUMINARE WTTH SPUU ALUMINUM HOUSING, GLASS IENS 	$\begin{aligned} & P O L E E_{2} \\ & +30^{\prime}-0^{\prime \prime} A F G \end{aligned}$	GARDCO \#MA-17-1-3-150HPS-208-NA W/ \#SRS-30H-5-D1-NP. SEE NOTE 16.	
U/300	3		TWO HIGH PRESSURE SODIUM SEMI-SPHERICAL AREA LUMINAIRES WITH SPUN ALUMINUM HOUSING, GLASS LENS, CUT-OFF OPTICS, AND IES TYPE III DISTRIBUTION. SEE NOTES 11 \& 14.	$\int_{+3010^{\prime}-0^{\prime \prime} \text { AFG }}$	GARDCO \#MA-17-2-3-150HPS-208-NA W/ \#SRS-30H-5-D2-NP. SEE NOTE 16.	
U/600	4			PolE,	GARDCO \#MA-17-4-3-15OHPS-208-NA W/ \#SRS-3OH-5-D44-NP. SEE NOTE 16.	
V/150	4		METAL HELDE SEMI-SPHERCAL AREA LUMINARE WTH SPUN ALUMINUM HOUSING, GLASS LENS, CUT-OFF OPTICS, AND IES TIPE III DISTRBUTION. SEE NOTE 18.	WALL NOTE 14	$\begin{aligned} & \text { GARDCO } \\ & \text { \#MW-17-1-3-150MH-208-NA-HS } \end{aligned}$	
w/80	2	F27W/T5/84	WET LOCATION 316 STAINLESS STEEL CONSTRUCTION AND HDWE, $3^{\prime \prime} \times 4$ " MAX CROSS SECTION WITH ROUND CLEAR PRISMATIC LENS, LOW TEMP BALLAST.	CANOPY STRUCTURE	$\text { PARAMOUNT } \# C 2-1-25-8-54-18-\mathrm{m}_{2}-120$$\text { \# } \because 2-1-2578-8-54=08-\mathrm{M2} 2-\mathrm{P9}=120$	
$\times 140$			Not USED			
Y/12		445H0		PENDANT, SEE NOTE 15	PEERLESS:\#EGSCM4-2-54T5HO-R4-120--DCT-F2-18-C200-ACG	
z/100		F3278		PENDANT,	LITHONIA \#MSSST-2-32-SEL-ND-120-GEB10RS	

[^0]
POWER \& SIGNAL DEMO - SECOND FLOOR
SCALE: $1 / 8^{\circ}=1^{1}-0^{\circ}$

TORAKAKX AUTOMATIC

Installation \& Service Manual for TX9300 Series with 2301 \& 2401 iMotion Slide Door Drive

 SURFACE MOUNTFLUSH MOUNT

WARNING - To reduce the risk of injury of persons - Use this operator only with sliding doors.

TORMAX USA INC.

12859 Wetmore Road
San Antonio, TX 78247
210-494-3551
210-494-5930 (Fax)
888-685-3707
www.tormaxusa.com
Issue Date: 9/15/2017
info@tormaxusa.com

TABLE OF CONTENTS

SECTION

Table of Contents Important Information

INSTALLATION

1. Header and Jamb Assembly 5
2. Header/ Jamb Assembly Preparation 6
3. Header/ Jamb Assembly Installation 7-8
4. Header and Transom Assembly
Transom Glass - Transom Assembly Detail
5. Threshold Installation 12
6. SO Panel Installation 13-14
7. SX Panel Installation 15
8. SX Panel Alignment 16-17
9. Access Control 18
10. Door Stop Adjustment 19
11. Sensor Routing 20
12. Powering Up the TX9000/ Primary Power Connection 21
13. Function Control Panel Inst./ Operation 22

PROGRAMMING INSTRUCTIONS
14. Function of Operating Modes on FCP 23
15. Programming with the FCP 24-25
16. Quick Start Up 26-27

Troubleshooting 28-29
Automatic Configuration 30
Programming Table (FW V10.0 and up) 31-34
Trouble Shooting Codes Table 35
17. Control Connection Diagram 36

IXIO/ iOneXT/ 7501 Sensor Wiring and Setup 37-39
Accessory Switch Wiring 40
ANSI/ BHMA A156.10, Sensor Walk Test 41-42
Final Checklist 43

TECHNICAL SPECIFICATIONS

Technical Data (T-1258e) 44
Cable Plan (T-1277e) 45
Control Unit Module (T-1259e) 46-47
Motor Unit Module (T-1274e) 48-49
Lock Unit Module (T1265e) 50-51
Battery Unit Module (T-1268e) 52-53
Power Supply Module (T-1269e) 54-55
Base Module (T-1261e)
56-57
Function Control Panel (T-1264e) 58-59
Input/ Output Module (T-1360e) 60-61

IMPORTANT INFORMATION

SAFETY/ WARNINGS SYMBOLS

NOTE indicates important information specific to the process or steps being performed.

ELECTRICAL VOLTAGE indicates that electrical voltage is present and that caution should be taken to prevent injury or property damage.

CAUTION indicates failure to follow instructions may result in personal injury and/ or property damage.

OPTIONAL COMPONENTS indicates components that are not installed in all systems.

WARNING - Failure to observe the information in this manual may result in personal Injury or damage to equipment. To reduce the risk of injury of persons use this operator only with pedestrian sliding doors.
 Save these instructions for future reference.

Installation and Service

Any and all TORMAX equipment must be installed, serviced and inspected by an AAADM Certified technician, to meet the current ANSI A156.10 and any local or state building codes.

The person responsible for the daily operation and maintenance of the system is referred to as "End-User".

It is the technicians responsibility:

1. Review the functions of the equipment with the end-user. Failure to do so, may lead to the improper use, could cause injury to persons and/ or damage to the equipment.
2. Familiarize the end-user with the Daily Safety Check Decal and how to perform the walk test procedures.
3. Illustrate to the end-user how to place the door out of service (turn off power or place in P mode or OFF mode of operation), if the equipment does not perform as described in the Daily Safety Check Decal.
4. Recommend to the end-user to have their equipment inspected annually by an AAADM certified technician.

Glazing

The glazing material of all doors shall comply with the requirements of ANSI Z97.1, American National Standard Performance Specifications and Methods of Test for Safety Glazing Material Used in Buildings.

IMPORTANT INFORMATION

Electrical Requirements for Installation Personnel
Have a licensed electrician:

- Make all mains primary power connections in accordance to federal, state and local regulations.
- Route mains primary power from power distribution panel (10 amp circuit breaker minimum per operator) to the operator.
- Install a service switch or emergency shut OFF switch, if required by customer or per regulations. This is in addition to the mains circuit breaker to interrupt power, switch must be rated @ 10 amp minimum.

Mains Connection

Connection: N + L1 + PE protected on site with fuse 10 AT, protective earth necessary.

Power rating:

iMotion 2202, 2301: $1 \times 230 / 1 \times 115 \mathrm{~V} \mathrm{AC}(+5 \% /-10 \%), 50-60 \mathrm{~Hz}$, max. 190 W
iMotion 2401: $1 \times 230 / 1 \times 115 \mathrm{~V}$ AC (+5\% /- 10%), $50-60 \mathrm{~Hz}$, max. 310 W
Supply cable: Type H05VV-F, H05RR-F or type S, SO, SJ, SJO, ST, STO, SJT, SJTO or AFS

今
Before beginning the work described below, check that the mains primary power is switched off. If required, place "Out of Service" tag on breaker or service switch.

It is recommended that any item (i.e. electrical box, conduit) be installed in the header away from moving door components, so not to interfere with the operation of the door.

iMotion 2202
iMotion 2301
iMotion 2401

- Route mains cable (1) through provided cable holders to mains supply print (3).
- Check the correct setting of the voltage selector (2).
- Do not apply power to the door until ready for commissioning.
- A system switch (FCP or 3-position switch) must be on site.

Make sure that the mains cable is secured properly to prevent getting into the moving parts of the operator or door system.
! The commissioning of the system may only take place through a qualified person trained by the manufacturer and under consideration of the required documents for commissioning and inspection for compliance!

HEADER \& JAMB ASSEMBLY

1) Doors with transom proceed to Page 9, 10 for assembly.
2) Shipped in accessory box, install trim plate onto header end bracket as shown.
3) Mount the jamb to the header using the supplied hardware as shown below.

4) TX9300 single slides with jamb mounted Doorway holding beams, route beam cables into and down the jams, connect the beam pigtails. Inspect \& note SO panel beam locations, install opposite Black (TX) cable or Gray (RCVR) cable in jamb. i.e Black cable across from a Gray.
5) Install SO panel bottom guide /s into the jamb and secure with supplied screws.

RH Jamb (Shown)

HEADER \& JAMB ASSEMBLY PREPARATION

6) Concealed Mount snap in back plate onto the jamb, Surface Mount do not install at this time, first secure jamb to the wall.

7) The header hole locations is dependent on the type of header. Pre- drill the header prior to lifting the unit into place. See illustrations below.

SURFACE

FLUSH
9) Concealed mount - Minimum of 6 holes should be drilled through the header The holes should be located at both ends and in the center.

10) Surface \& Flush mount - Holes should be drilled through the header spaced $48 "$ minimum. With the first hole within $12^{\prime \prime}$ from the jamb.

HEADER \& JAMB ASSEMBLY INSTALLATION - CONCEALED

1) Determine the highest point of the floor by using a water level. See Illustration 1. Make note of this point.

(1)
Recommend securing the jambs at 3 locations (top, bottom, center) as work environment permits. Select a location to limit visibility on final assembly.

\triangleCaution should be taken when lifting assembly into place and should never be done by one person.
2) Lift the header/ jamb assembly into place, level the header according to the floor conditions using appropriate shimming material.
3) Plumb the jambs in both directions. See Illustration 2
4) Type of fasteners and securing locations of the jambs will depend on the work environment. It is suggested that the jambs be secured at three locations. Locate the fasteners to limit visibility on the final assembly. See Illustration 1.
5) In the event there is nothing to mount the jamb to vertically a L-bracket can be installed at the bottom of the jamb. Install bracket to provide the most support in the least visible location possible. See Illustration 3.
6) Install the Jamb snap in filler profile. See Illustration 3.

HEADER \&JAMB ASSEMBLY INSTALLATION - FLUSH MOUNT

Caution should be taken when lifting assembly into place and should never be done by one person.

1) Recommend securing the jambs at 3 locations (top, bottom, center) as work environment permits. Drill holes through jamb side wall adjacent to the wall.
2) Lift the header/ jamb assembly into place, level the header according to the floor conditions using appropriate shimming material.
3) Check both jambs for plumb and square. Check jamb spacing at the header, keep the same width spacing at the bottom of the jambs.
4) Type of fasteners and securing locations of the jambs will depend on the work environment.
5) In the event there is nothing to mount the jamb to vertically, a L-bracket can be installed at the bottom of the jamb. Install bracket to provide the most support in the least visible location possible.
6) Snap jamb back plate onto the jamb.

HEADER \& TRANSOM ASSEMBLY

©
Install T-Nuts into channel on top of header before attaching jambs. T-Nuts used for securing Transom Intermediate Vertical Bracket (G). Check Accessory Pack for Hardware!

1) Insert T-nuts, attach Jambs (B) to Header (L) with hardware as shown below.

2) Make appropriate clearance hole /s for 120 V electrical power cable.
3) If equipped with jamb mounted photo electric (safety) beams, check SO panel beam locations black and grey cables. Route cables down the jamb and connect beams as shown.
4) Snap jamb tube back plate (A) onto jamb (B).

The factory will install Horizontal Header Insert (D) into the Horizontal Header Pocket (C) and Snap in Gutter (E) into Transom Vertical (F), same as jamb extrusion.
5) Drill a securing hole (size depends on mounting screw) through both Horizontal Header Insert (D) and the Horizontal Header Pocket (C) .
6) Drill a larger clearance hole into the Horizontal Header Insert (D), so that the screw can pass through and secure the Horizontal Header Pocket (C).

HEADER \& TRANSOM ASSEMBLY

(1)
The Snap in Gutter (E) and Transom Vertical (F) have 2 pocket sizes. Never have two (F) assemblies (shallow to shallow) facing each other. Glass will not fit.
7) Determine intermediate vertical locations by placing Transom gutter (H) onto the header, verify spacing with openings in Horizontal Header Pocket. Move T-Nuts between Transom Gutter (H).
8) Position L-Bracket so header mounting screw is on deep pocket side of intermediate vertical assembly (F). Loosely secure L-Bracket (G) onto the header (L).
9) Install and secure intermediate vertical assembly (F) onto L-Bracket with two supplied screws.
10) Snap in Transom Gutters (H), Center intermediate vertical assembly (F), tighten screw into header T-Nut. Install remaining intermediate verticals.
11) Install Horizontal Header Pocket (C) onto jambs (B) and intermediate vertical assembly (F).

\triangle
Caution should be taken when lifting assembly into place and should never be done by one person.

Refer to page 7 for details in installing and securing the door package.

TRANSOM GLASS - TRANSOM ASSEMBLY DETAIL

(I) Glass cleaner can be used as a lubricant to install the vinyl (M,N)

1) Install appropriate glazing block (I-1" glass, J-1/4" glass) onto (H).
2) Install the glass by placing it into the deep pocket on the vertical jamb, once glass clears opposite side vertical, center between pockets and place on glazing blocks.
3) Install transom face stop (K) on header and finish by installing the appropriate vinyl ($\mathrm{M}-1 / 4$ " glass, $\mathrm{N}-1 /$ " glass).

Transom Assembly Detail

A) US800958 Jamb Tube Back Plate B) US800956 Jamb Tube
C) US800829 Horizontal Header Pocket D) US800828 Horizontal Header Insert E) US800957 Snap in Gutter F) US800956 Transom Vertical , Jamb extrusion G) US801048 Transom Vertical Bracket H) US801041 Transom Gutter, top of header I) US801044 Glazing Block 1 " glass J) US801043 Glazing Block 1/4" glass K) US801042 Transom Face, top of header L) US801619 Header M) US801051 Transom Vinyl, 1/4" glass N) US800822 Transom vinyl, 1" glass

THRESHOLD INSTALLATION

1) If using a Combination threshold align the threshold to the interior edge of the jamb. See Illustration 1.
2) If using a Double Beveled or Recessed threshold center the threshold to the jamb. See Illustration 1.
(I) Use a chalk line from jamb to jamb to create a reference line.
3) The threshold must be secured to the floor using the appropriate fasteners for the type of floor. Fasteners should be spaced 18" apart for the length of the threshold, starting 1 1/2" from each end. See Illustration 2.
4) If required use appropriate shim material to level the threshold as shown below. Measure from the top of the threshold to the bottom of the header in 18 " inch increments the full width of the header to insure the header and threshold are parallel to each other.
5) The threshold must be supported through its entire length. Mortar works best where a large gap is present, as the threshold could become deformed over time and interfere with door operation.
© If a trip hazard is created by leveling the threshold then the transition should be eased to eliminate this hazard.

Illustration 1

SO - PANEL INSTALLATION

1) Install the SO bottom pivot jamb/threshold portion using supplied hardware. as shown below in illustration A.
2) Remove comdor cover to expose $S O$ top pivot header portion. If equipped, route safety beam wires through top pivot header portion and through access hole into the header. Route wires to control.
3) Unlock top pivot door portion as shown below. At 90° degrees, lift door panel onto bottom pivot jamb/ threshold portion.
4) Align top pivot door/ header portions, pull slack out of safety beam wires and lock top pivot door portion.
5) Adjusted door panel height in closed position with supplied bottom pivot wrench.

SO - PANEL INSTALLATION

6) Check glass block placement as shown below in Illustration 1. Install the glass and slide glass blocks into position.
7) Install Glass Stop face as shown in Illustration 2.
8) Adjust Jacking Screw to raise the leading edge of the door up as shown in Illustration 3. Maintain a straight sight line at the header when the door closed.
9) For existing doors without jacking screw, cross block the glass to raise the leading stile of the door or order a Jacking Screw kit:

1/4" Glass Part\# US801690
1" Insulated Glass Part\# US801691

Illustration 1

Illustration 2

SX-PANEL INSTALLATION

Tormax recommends cross blocking the glass similiar to the SO panel, as it will provide support in the door breakout position.

The lead edge trolleys mounted to the belt are shipped with the anti-risers tight against the track to prevent damage in shipment, remaining trolleys are shipped in accessory box.

1) If equipped with door sweeps, install the sweep into the holder assembly in the bottom of the SX panel and secure with supplied set screws.

2) Loosen the two 13 mm mounting bolts on top of the SX-Panel until only two threads are engaged.
3) Lift door up onto the trolley and tighten panel 13 mm mounting bolts to keep the panel from falling off the trolleys.

4) Loosen anti-risers to re-position the trolleys. Adjust the height adjustment screw to lower the trolley, as this will help when lifting the door into place.
5) Release the bottom door guide by loosing set screw, align with the guide channels on the threshold.
6) Adjust the door panel so that it is parallel to the header and makes slight contact with the weather seal on the header. (minimizing drag) Tighten
 13 mm mounting bolts.

SX-PANEL ALIGNMENT

(1)

The alignment of the SX-Panel is critical to the functionality of the sliding door.

1) Loosen the 13 mm locking bolts on each trolley 1-2 turns, loosen 8 mm locking nut on height adjustment screws.

2) Adjust the 8 mm door height screw to position the door at the proper operating height and to level the door panel.
3) Fine adjust the door height with each trolley to level the door and line up the sight lines of the vertical rails and/ or jambs as shown below.
4) Tighten locking nut and locking bolts.

Incorrect

Correct
5) Adjust the bottom guide up a $1 / 16$ " off the bottom guide track,lock in place with set screw. Slide door open and close, check for proper engagement in the track.

SX-Panel
Back Rail

SX-PANEL ALIGNMENT

6) Adjust anti-riser 17 mm wrench/ 5 mm Hex key for a gap of .020 " (approximately the thickness of a credit card) between the roller and the track.

7) In the door closed position, loosen door sweep set screws, adjust the door sweep(s) to make slight contact with the floor. Re-tighten set screws.

8) Slide the door panel(s) open and close, checking that the door sweep/s does not bind on the threshold.
9) Doors should slide freely with two finger pressure.

ACCESS CONTROL ASSEMBLY

(1)If the door was ordered with the access control feature, the major components (panic device, electric lock) are pre-installed at the factory. Adjustments will need to be made.

1) The door in the closed position, check the alignment of the lock module with relationship to the locking pins located on top of the trolley(s).
2) Loosen the (4) 4 mm Hex head bolts securing the lock module, loosen the 10 mm bolts securing the locking cam brackets.
3) Adjust locking cam(s) and lock module for a minimum clearance of $1 / 32^{\prime \prime}$ between locking plate and cam(s). Secure lock module and cam brackets.
(I At no point should the locking cams come in contact with each other or the locking plate.

Electric Lock

Bi-Part
-5
2 Code switch
3 LIN-Bus Connector
4 Locking cam plate, Single slide
5 Locking Cam plate, Trolley

Panic Hardware

DOOR STOP ADJUSTMENT

1) The SX Panel door stop should be adjusted to provide a 1" gap (Finger Protection) between SX Panel and O-Panel/ P-Panel.
2) To increase the finger guard distance, move the stop towards the door opening direction.
3) To decrease the finger guard distance, move the stop towards the door closing direction.

Door Stop

SENSOR ROUTING

(I) Refer to the sensor manual for maximum mounting height of the sensor. The maximum mounting height on the header is 2 " measured from the bottom of the header.

1) Determine the center of the Clear Door Opening, align and apply sensor template onto the header drill hole for wire routing.

2) Insert sensor cable through the header as shown shown below.

Single Slide

3) Route sensor cable through the header to the control. Keep cables clear of any moving parts. Recommend zip tie cable to 1st plastic clip inside the header for non-cover side sensor.

Do not connect sensor cables to the control at this time. Sensors will be connected after setup is complete.

PRIMARY POWER CONNECTIONS FOR TX9300

A
All primary electrical connections should be completed by a licensed electrician! The unit requires 115 VAC as primary power.

1) Remove power plug by pressing red locking tab to make primary power connections.
2) Check voltage switch is set to 115 .
3) Insert power plug when ready to perform teach-in, programming and overall performance check.

Set to115 v
Equipped with a Locking Type Power Plug.

Underside

CAUTION!

Check For Proper Voltage 115 VAC 60 Hz TORMAX alliomanc

FUNCTIONAL CONTROL PANEL (FP) DESCRIPTION / INSTALLATION

(1)
The Functional Control Panel (FCP) is the interface between the door system and the end user/ technician. The FCP will be factory installed on the cover side of the header or field installed in a remote location dependent on customer requirements.

The FCP has 2 function levels:

Level 1 - End user

- Select operating modes
- Display three-digit fault codes.
- Access protected eliminates unauthorized programming.

Level 2 - AAADM Certified technician

- Access protection, access code (111)
- Programming door system to comply with the current ANSI 156.10 standard.
- Displays currently set parameter.
- 10 min time out after the last programming entry is made.

DESCRIPTION OF FCP OPERATING MODES

The 6 modes of operation is selectable on the Functional Control Panel (FCP) by utilizing buttons 1 or 2 . Button 1 moves LED clockwise, button 2 moves counter clockwise.

O- OFF Mode

The interior and exterior sensors are inhibited after the door reaches the fully closed position, if equipped with an electric lock the lock will engage. Key switch input will open the door, when activated.

Automatic 1 Mode
Two-way traffic, typical setting for normal operation. This setting allows interior \& exterior sensors, key switch and safety device to operate the door.

Automatic 2 Mode (Reduced Opening)
Allows the door to open with a reduced opening width. Door opening width and hold open time can be adjusted. Hold open time adjustment separate from Automatic 1 mode.

EXIT Mode
Allows interior activation and key switch inputs to operate the door system. Exterior activation input is inhibited in door closed position, but becomes active when door is operated by interior activation or key switch inputs.HOLD - OPEN Mode
Hold the door system open.

MANUAL OPERATION (P) Mode
Allows the door to be used manually without the use of sensors, push and pull activation. Indicates when the door is in panic/ break-out position.

The technician will clearly explain and demonstrate the modes of Operation to End user.

PROGRAMMING WITH THE FCP

Button 1 - Increments the number or letter by one ($0-9, a, b, c, \ldots$ back to 0)
Button 2 - Confirms or enters the displayed character into the control
(I Place FCP display into "P" Park/ Manual mode during programming

1) Start Access Code

Example 1: Enter access code 111

Display on FCP		
	\downarrow	
Press both buttons 1,2 simultaneously until	C	is displayed, release both buttons is displayed
Press button 2 and	0	
Press button 1 to display	1	Press button 2 to enter "1"
	0	is displayed
Press button 1 to display	1	Press button 2 to enter "1"
	0	is displayed
Press button 1 to display	1	Press button 2 to enter "1"
	P	is displayed, now in program mode

(1)Time out occurs, if no input is made during 10 s , the FCP reverts back to displaying P , then displays the operating mode.

Within 10 minutes you can enter the programming mode by pressing both keys simultaneously and P will display. If no further adjustments are made after 10 minutes the FCP will time out and require access code re-entry. Repeat example 1.

PROGRAMMING WITH THE FCP

3) Start Programming Level

Example 1: Enter code 030 to Detect and store reference distance

Example 2: Enter code 036 to Detect and store door mass (weight)

After the 2nd code digit has been confirmed, the flashing digit show set value of the parameter ($=3$ rd digit of the parameter code). If the value is confirmed the FCP will rapidly flash for 1 sec then display " P " again.
(1)

Quickly pressing and releasing both buttons simultaneously the FCP will return to displaying the mode of operation.

QUICK START UP

The control will be factory programmed to the function of the application. Do not perform a factory reset or an Auto-configuration.

Requirements

- Check all fasteners for security.
- Wire routing \& connections, LIN - BUS connections are complete and clear of moving parts.
- Do not connect Doorway Holding (safety) beams and Overhead Sensors to the door control.
- If equipped, connect battery back-up module 8 pin connector to door control.
- If equipped, with an electric lock check electrical connection (lin-Bus) and for proper clearances between lock and locking posts.
- All mechanical adjustments completed:
* SX sliding panel adjustments: height adjustment, door sweep height adjusted, no rubbing against weather seals, Bottom Guide/ s, Anti-riser/ s, panel/s move freely/ two finger pressure.

Self-monitored Sensors - Configuration

Do not connect the overhead sensors or doorway holding beams to the door control at this time. Insert jumpers into terminal A pins 2, 3 and 6, 7 and terminal B pins 2, 3 and 6, 7 as shown below.

1. Check that input in 4 terminal D pins 4,5 LED is "ON", if not:
A. Check breakout circuit - SO stationary panel/s are in closed position.
B. Change ON/ OFF, ON/ OFF/ HO switch position till LED illuminates as shown above.
2. Enter Code 030, 036 into the FCP display.

It is especially important to limit the flow of traffic during the following process as the activation or safety devices are not operational.
3. Change operating mode to "AUTO" on the FCP display. Push-n-release SW2 button to activate the door open.
4. Cycle the door open with a momentary push of SW2 button, each time the door reaches the closed position. Process can take up to 14 activations. Process is complete with an audible beep from the control and the H 65 no longer is displayed on the FCP.

QUICK START UP

SW2 Switch is the small blue button on the control to activate the door if pushed momentarily. When used to activate the door there is no hold open time, door goes fully open and closes immediately.
5. Remove jumpers from safety inputs (sf1,2,3,4) connect the safety beams in terminal A (sf1,2). Connect self-monitored sensors into terminal B (sf3,4) refer to sensor connection diagrams for connections and configuration settings.

Additional Adjustments

Below are frequently used adjustments, refer to the Programming Charts section for a more detailed list.

Function
Code:
Function:
Settings Code:

103	Hold Open Time, Automatic Mode 1	0	1	2*	3	4	5	6	7	8	9	Code	Additional Settings on Programming	
		0	0.5	1	2	3	5	7.5	10	12.5	15	Sec.		
113	Hold Open Time, Automatic Mode 2	0	1	2*	3	4	5	6	7	8	9	Code		Table
		0	10.5	1	2	3	5	7.5	110	12.5	15	Sec.		
212	Closing Speed	0		1	2	3	4^{*}		5	6	7	8	9	Code
		3.15		6.3	9.45	12.6	15.7		18.9	22.05	25.2	2 28.35	31.5	Inch/s
224	Close Check Speed	0*		1	2	3	4		5	6	7	8	9	Code
		. 59		63	. 71	. 82	1		1.18	1.43	1.68	812	2.36	Inch/s
41	Reduced Opening Width	0	1	2	3	4	5	6*	7	8	9	Code		
		10	20	30	40	50	60	70	80	90	100	\%		
551	Lock in OFF, EXIT mode													

!
Always inspect and adjust the installation to be in accordance with the current ANSI A156.10 standard.
Test all FCP functions for proper operation.

TROUBLESHOOTING

Troubleshooting - New installations

If the door is running backwards, FCP in HOLD OPEN door physically closed, FCP in OFF (red key) door is physically open.

1. Enter the code listed below for door type to change motor rotation.
(Code 080)
(Code 081)

Motor Rotation	Clockwise	Counter Clockwise
Door Type	TX9300 Bi-Part, Left Hand Single Slide	TX9300 Right Hand Single Slide

If the door does not function correctly check the settings below with the FCP display. To check the settings enter the first two values (function code), the third flashing value (setting), if the setting value does not match value listed then change to the value shown below.

Example: Enter function code 63, if " 1 " is flashing then let the FCP time out and return to P display.

Example: Enter function code 63 , if " 0 " is flashing then change to " 1 ", enter the value.

63 "1"	Input in, D terminal pin 4,5-(1) = Operation mode MANUAL (FCP=P)	038
65 " 2 "	Input sf2, A terminal $-(2)=$ Safety Closing 1 with reversing function	031
66 "C""	Input sf3, B terminal $-(C)=$ Safety Closing 2 with reversing function	031
67 "C"	Input sf4, B terminal $-(C)=$ Safety Closing 2 with reversing function	031

If any of the functions were changed then verify that the input LED /s are ON:
For in 4 - Enter code 038
For sf1, sf2, sf3, sf -Enter code 031

Contact Tormax Technical support for troubleshooting assistance

TROUBLESHOOTING

(I) Existing installations - Contact Tormax Technical support for troubleshooting assistance, factory reset is for extreme cases.

1. Factory Reset - Enter Code 041, (H11 = Operator Type not Defined)

FCP will display H11 = operator type not defined
2. Operator Type - Enter Code

Control Type	2301	2401
Program Code	011	012

(I) FCP will display H 14 until entire process is complete
3. Breakout function - Determine which input terminal the breakout beam or ON/OFF/HO switch is wired into. Input LED has to be illuminated before entering codes.

IN4, D terminal pins 4,5	631	038
sf4, B terminal pins 5,6	679	---

4. Safety Functions - Beams in A terminal and Overhead sensors. (i-One, Eagles, motion sensors) No change needed.
5. Safety Functions - Beams and overhead combination sensors.(7501, IXIO, i-oneX T) All safety devices should be setup for normally closed, all safety input LED ON. Enter Codes

65 "2"	Input sf, A terminal $-(2)=$ Safety Closing 1 with reversing function
66 "C"	Input sf3, B terminal $-(C)=$ Safety Closing 2 with reversing function
67 "C"	Input sf, B terminal $-(C)=$ Safety Closing 2 with reversing function

6. Place FCP in P manual mode, manually open the door to the full open position.
7. Automatic Configuration - Enter Code

Press SW2 for 1 Beep (Code 021)	Press SW2 for 2 Beep (Code 022)	
Motor Rotation	Clockwise	Counter Clockwise
	Bi-Part, Left Hand	Right Hand
Door Type	Single Slide	Single Slide

8. Place the FCP to Auto Mode and allow the door to fully close, H 64 will display. Activate the door by momentarily pressing the SW2 button located on the control. Continue to activate the door with the SW2 button until the "H" learn codes clear and an audible beep tone. Maximum number of cycles 14.
9. Adjust additional functions such as hold open, closing speed, closing check speed... as shown on page 26.

AUTOMATIC CONFIGURATION

Automatic configuration consist of the following activities in programming:

SF1 - SF4	The contact type (NO or NC) and monitoring if applicable will be automatically detected. Make sure sensor zones are clear and not in detection.
Lock Unit	The functioning Lock is automatically detected and set to default operation. See programming table for options.
MCU32-LOCU	The functioning Battery back-up is recognized if connected.
Battery Unit	
MCU32-BATU	The functioning I/O module is recognized and saved via the LIN Bus, if the module is connected and coded as module 1 or 2.
Input / Output Module MCU32-INOU-A	The FCP is recognized and saved via the LIN Bus, if connected and coded (1 or 2). The FCP is detected
immediately when connected to the LINE Bus input of control.	
MCU32-USIN-7-A	The functioning power supply module is recognized and saved,
if connected to the control at connector labeled Power Supply.	
MCU32-PSUP-40-18-C	
MCU32-PSUP-40-36-A	The door searches for the open and closed end stops, starting with an automatic closing command displaying H64. Activating the door control will start the opening cycle displaying H63.
Reference Run	After travel distance is determined it is saved.
Door Dimensions	The doors width and weight are detected during the initial opening cycles for the purpose of calculating check speed \& distance, opening \& closing speeds and controller settings.

Automatic configuration process consists of cycling the door open and closed until all programming activities are complete. The learning process lasts for a maximum of 14 cycles. The FCP displays "H" codes as a visual aid through the process. When the learn process is complete an audible tone from control and " H " codes on FCP will stop being displayed.

PROGRAMMING TABLE

(!) Most common parameters used are highlighted. * Indicates Default Value

Cod		Function																Note
01	1	Door operator type iMotion 2301																
01	2	Door operator type iMotion 2401																
02	1	Automatic configuration: All Bi-Part, TX9200/ 9430 RH SS, TX9300/ 9420 LH SS																(SW2: hold 1 Beep) Contains 030...7, 07x, 08x
02	2	Automatic configuration: TX9200/ 9430 LH SS, TX9300/ 9420 RH SS																(SW2: hold 2 Beeps) Contains 030...7, 07x, 08x
03	0	--Detect and store reference way																
03	1	--Detecting and storing of safety facillities 1-4																(SW2: hold 3 Beeps) Safety inactive
03	2	--Detecting and storing MCU Lock Module 1																Only with code 572. Check coding on module.
03	3	--Detecting and storing of MCU Battery Module																
03	4	--Detecting and storing of MCU I/O- Module 1+2																Check coding on module
03	5	--Detecting and storing of MCU Power supply Module																
03	6	--Detecting and storing of Door mass																Display H65
03	7	--Detecting and storing of MCU User interface 2																Check coding on module
03	8	Terminal Module: Detecting, storing "in 1-4" (NO,NC,100Hz)																Pulse generators inactive
03	9	I/O Module 1: Detecting, storing of "in 1-4" (NO, NC)																Pulse generators inactive
04	0	Reset																Starts program with calibration run
04	1	Factory Reset																All adjustments back to default values (see *)
04	2	Firmware version																Example: $\mathrm{r} 06 _00=$ V06.00
04	3	Number of cycles																Example: c10_302 = 10'302 cycles (max. 99?999?999)
04	4	Number of operating hours																Example: h4_002 = 4002 hours (max.99'999'999)
04	5	Delete fault protocol																
04	6	Address of control unit for network																Example: A1 = address no. 1
06	0 *	Control without FRW																FRW = Equipment for rescue and escape routes
06	1... 8	Functions with FRW																
07	0... 9	--Door mass																Automatic detection contained in $021 / 022$
08	0... 10^{*}	--Rotating direction of drive																0 contained in 021 / 1 contained in 022
10 0...F		Hold-open time of activator in mode of op. AUTO1																
		0	1	2 *	3	4	5	6	7	8	9	A	b	C	d	E	F	code
		0	0.5	1	2	3	5	7.5	10	12.5	15	17.5	20	25	30	45	60	sec.
$110 \ldots \mathrm{~F}$		Hold-open time of activator in mode of op. AUTO2																
		0	1	2 *	3	4	5	6	7	8	9	A	b	C	d	E	F	code
		0	0.5	1	2	3	5	7.5	10	12.5	15	17.5	20	25	30	45	60	sec.
12 0...F		Hold-open time of key switch																
		0	1	2	3	4*	5	6	7	8	9	A	b	C	d	E	F	code
		0	0.5	1	2	3	5	7.5	10	12.5	15	17.5	20	25	30	45	60	sec.
13 0...9		Delay time Mode of op. OFF																
		0	1	2*	3	4	5	6	7	8	9							code
		1	3	5	7.5	10	15	20	30	45	60							sec.
14 0...9		Bell active time																$0=$ Duration identical to trigger duration
		0	1	2*	3	4	5	6	7	8	9							code
		=imp	0.5	1	2	3	4	5	6	8	10							sec.
$150 \ldots 9$		Bell intermission																
		0	1	2	3	4	5	6*	7	8	9							code
		0	0.5	1	2	3	4	5	6	8	10							sec.
$160 \ldots 9$		Stop time after safety																
		0	1	2*	3	4	5	6	7	8	9							code
		0	0.5	1	2	3	4	5	6	8	10							sec.
17 0...9		Runtime Battery in mode of op. 2-6																Door opens after switch-off battery
		0	1	2	3*	4	5	6	7	8	9							code
		10s	1	5	10	30	60	120	240	360	480							$\mathrm{sec} / \mathrm{min}$.

[^1]
PROGRAMMING TABLE

(I) Most common parameters used are highlighted. * Indicates Default Value

* = Default value when factory reset

PROGRAMMING TABLE

(I) Most common parameters used are highlighted. * Indicates Default Value

* = Default value when factory reset

PROGRAMMING TABLE

(I) Most common parameters used are highlighted. * Indicates Default Value

Code		Function	Note
70	4	I/O Module 1: in1: Operating mode EXIT	Contact NO. NC detect with code 039
70	5	I/O Module 1: in1: Operating mode OPEN	Contact NO. NC detect with code 039
70	6	I/O Module 1: in1: Operating mode MANUAL	Contact NO. NC detect with code 039
70	7	I/O Module 1: in1: Inhibit switch	Contact NO. NC detect with code 039
71	0... 7 0*	I/O Module 1: in2: Same choice of functions as on I/O Module 1: in1	Contact NO. NC detect with code 039
72	0... 7 0*	I/O Module 1: in3: Same choice of functions as on I/O Module 1: in1	Contact NO. NC detect with code 039
73	0... 7 0*	I/O Module 1: in4: Same choice of functions as on I/O Module 1: in1	Contact NO. NC detect with code 039
74	0 *	I/O Module 1: out1: No function	
74	1	I/O Module 1: out1: Operating mode OFF	
74	2	I/O Module 1: out1: Operating mode AUTOMATIC 1	
74	3	I/O Module 1: out1: Operating mode AUTOMATIC 2	
74	4	I/O Module 1: out1: Operating mode EXIT	
74	5	I/O Module 1: out1: Operating mode OPEN	
74	6	I/O Module 1: out1: Operating mode MANUAL	
74	7	I/O Module 1: out1: "Door is opening"	
74	8	I/O Module 1: out1: "Door is opening or open"	
74	9	I/O Module 1: out1: "Door is closing"	
75	0...9 0*	I/O Module 1: out2: Same choice of functions as on I/O Module 1: out1	
76	0...9 0*	I/O Module 1: out3: Same choice of functions as on I/O Module 1: out1	
77	0...9 0*	I/O Module 1: out4: Same choice of functions as on I/O Module 1: out1	
78	0	User Interface 1: in1: No function	
78	1 *	User Interface 1: in1: User interface lock	Contact NO. Use User Interface from V1.07!
78	2	User Interface 1: in1: Operating mode OFF	Contact NO. Use User Interface from V1.07!
78	3	User Interface 1: in1: Operating mode AUTOMATIC 2	Contact NO. Use User Interface from V1.07!
78	4	User Interface 1: in1: Operating mode EXIT	Contact NO. Use User Interface from V1.07!
78	5	User Interface 1: in1: Operating mode OPEN	Contact NO. Use User Interface from V1.07!
78	6	User Interface 1: in1: Operating mode MANUAL	Contact NO. Use User Interface from V1.07!
78	7	User Interface 1: in1: Emergency closing	Contact NO. Use User Interface from V1.07!
78	8	User Interface 1: in1: Emergency opening in all op. modes	Contact NO. Use User Interface from V1.07!
78	9	User Interface 1: in1: Key switch	Contact NO. Use User Interface from V1.07!
79	0...9 0*	User Interface 1: in2: Same choice as on User Interface 1: in1	Contact NO. Use User Interface from V1.07!
80	0 *	Bell trigger: Safety closing 1	
80	1	Bell trigger: Safety closing 2	
80	2	Bell trigger: Activator inside	
80	3	Bell trigger: Activator outside	
80	4	Bell trigger: Key switch	
82	0 *	No step-by-step control	
82	1	Step-by-step control only for key switch	
82	2	Step-by-step control only for activator inside and outside	
82	3	Step-by-step control for activator inside, outside and key switch	
84	0 *	No emergency opening with MCU32-MBTU	
84	1	Emergency opening with MBTU, Type A, with direct opening	Application see T-1705
84	2	Emergency opening with MBTU, Type B, with cycle operation and opening	Application see T-1705
85	0 *	No airlock function	
85	1	Airlock function for inner door	Application see T-1304
85	2	Airlock function for outer door	Application see T-1304

* = Default value when factory reset

TROUBLE SHOOTING CODES

* $\mathrm{E}=$ Error $\mid \mathrm{H}=$ Hint

* No.	Fault	Reaction System	Reset
E00	Firmware incompatible to MCU version /D	Safety operating mode or only display	Reset, new version MCU32-BASE
E0x	Internal test negative	Safety operating mode or only display	Reset
E11	MCU Lock 1, wrong position	Door cannot open	Automatically if OK
E20	LIN to Monit. battery mod. MBAT interrupted	-	Reset
E21	LIN to User Interface 1 USIN interrupted	Last mode of operation remains	Automatically if OK
E22	LIN to User Interface 2 USIN interrupted	Last mode of operation remains	Automatically if OK
E23	LIN to s I/O-Modul 1 INOU interrupted	Programmed function will be inactive	Automatically if OK
E24	LIN to s I/O-Modul 2 INOU interrupted	Programmed function will be inactive	Automatically if OK
E25	LIN to Lock Unit 1 LOCU interrupted	Last status remains	Automatically if OK
E26	LIN to Lock Unit 2 LOCU interrupted	Last status remains	Automatically if OK
E29	LIN to Power Supply PSUP-40-36 interrupted	Last status remains	Automatically if OK
E30	Safety clos. creep $2>1 \mathrm{~min}$. active,test neg.	According safety function	Automatically if OK
E31	Safety open $1>1 \mathrm{~min}$. active, test neg.	According safety function	Automatically if OK
E32	Safety op. creep $1>1 \mathrm{~min}$. active, test neg.	According safety function	Automatically if OK
E33	Safety closing $1>1 \mathrm{~min}$. active, test neg.	According safety function	Automatically if OK
E34	Safety clos. creep $1>1 \mathrm{~min}$. active,test neg.	According safety function	Automatically if OK
E35	Safety swing area $>1 \mathrm{~min}$. active, test neg.	According safety function	Automatically if OK
E36	Safety stop >1min. active, test neg.	According safety function	Automatically if OK
E37	Safety open $2>1 \mathrm{~min}$. active, test neg.	According safety function	Automatically if OK
E38	Safety op. creep $2>1 \mathrm{~min}$. active, test neg.	According safety function	Automatically if OK
E39	Safety closing $2>1 \mathrm{~min}$. active, test neg.	According safety function	Automatically if OK
E40	User-defined input > 1min. active	(Door remains open)	Automatically if OK
E41	Activator inside > 1min. active	Door remains open	Automatically if OK
E42	Activator outside > 1min. active	Door remains open	Automatically if OK
E43	Key switch > 1min. active	Door remains open	Automatically if OK
E46	Emergency open >10min. active	Door remains open	Automatically if OK
E47	Emergency close >10min. active	Door closes and remains closed	Automatically if OK.
E48	Wake up or Push button SW2 > 1min. active	Door remains open	Automatically if OK.
E49	Inhibit switch> 1 min. active	Door stand still	Automatically if OK.
E51	Encoder not working	Safety operating mode	Automatic Reset / Reset
E53	Calibration run different from reference	Safety operating mode	Reset
E54	Driveway in op. longer than reference	Safety operating mode	Reset >automatic configuration
E55	Position drift >9mm, toth belt jumping	Only display, auto-correction stops	Automatically if OK / Reset
E56	Door blocked	Saftey operation mode	Reset
E61	Voltage 40V outside of admissible range	Safety operating mode	Automatically if OK
E62	Power Supply 24V (Limit U, I)	Safety op. mode	Automatically if OK
E63	Current in power supply 40V to high	Safety operating mode	Automatically if OK
E64	Motor temperature $>90^{\circ} \mathrm{C}$, cable interrupted	Safety operating mode	Automatically after cooling down
E65	Control end stage $>100^{\circ} \mathrm{C}$	Safety operating mode	Automatically after cooling down
E66	Motor control faulty in MCU32-BASE	Safety operating mode	Reset
E67	Motor current to high in long-term	Normal operation	Automatically if OK
E72	Battery Unit MBTU: Charge < 15\%	Normal operation	Automatically if OK
E73	Battery Unit MBTU faulty (MBAT or accu)	Normal operation	Reset or disconnect power supply
E8x	Memory or processor test negative	Safety operating mode	Reset
H11	Operator type not defined	Safety operating mode	Program operator type
H14	Automatic configuration not executed	Safety operating mode	Program 021 or 022
H61	Calibration run in opening direction	Searches open position	At the end of movement
H62	Calibration run in closing direction	Searches closed position	At the end of movement
H63	Reference run opening	Measures reference run length	At the end of movement
H64	Reference run closing	Searches closed position	At the end of movement
H65	Learn mode (Weight detection)	Normal operation	After 3-12 opening cycles
H71	Battery mode	Door moves slowly	Power supply return
H73	Motor current in closed position to high	Normal operation	Reset, reduce 33x
H91	Obstacle detection at opening	Door reverses	Automatically, Display 20s.
H92	Obstacle detected at closing	Door reverses	Automatically, Display 20s.
H93	Permanent obstacle at opening	Reset after 5 reversings	Automatically, Display 20s.
H94	Permanent obstacle at closing	Reset after 5 reversings	Automatically, Display 20s

CONTROL CONNECTION DIAGRAM

Function	Control Input	Control Terminals	Code
Inside Activation	Input 1	C1, C2	603
Outside Activation	Input 2	C4, C5	614
Key Switch ${ }^{* *}$	Input 3	D1, D2	625
Breakout Mode (P) ${ }^{* * *}$	Input 4	D4, D5	631
Safety Closing w/ Reversing 1	sf1	A1, A2	642
Safety Closing w/ Reversing 1***	sf2	A5, A6	652
Safety Closing w/ Reversing 2***	sf3	B1, B2	66 C
Safety Closing w/ Reversing 2***	sf4	B5, B6	67 C
Aux. Lock Output****	PWM	E1, E2	-
Bell	Out 1	E3, E4	684
Door Closed	Out 2	E5, E6	690

* Functions as a reactivation input when door is One-Way / Exit Mode of operation.
** Activate the door in all modes of operation except in P/ Parked/ Manual/ Breakout.
*** The code changes with a factory reset, code will need to be re-entered.
**** Used as Lock output for swing door applications.

Power Output to Sensors is . 75 A max (For 2301 Standard Door Drive).
Power Output to Sensors is 1.5 A max (For 2401 Heavy Duty Door Drive)

CONNECTION DIAGRAM

BEA IXIO -DT1 sensors with Doorway Holding Beams

Configure the IXIO sensor as as indicated below:

1. AIR: OUTPUT = NC
2. $\mathrm{TEST}=\mathrm{ON}$

Adjusted sensors to comply with current ANSI A156.10 standard. Refer to BEA IXIO User Guide to set up and adjust sensor.
i-OneXT sensors with Doorway Holding Beams

Configure the i-OneXT sensor as indicated below:

1. Simultaneous Output dipswitch $14 \downarrow=$ OFF
2. Safety Output dipswitch 15 t = NC
3. Test Input dipswitch $16 \uparrow=$ Low

CONNECTION DIAGRAM

Delta III/ 7501 sensors with Doorway Holding Beams

(1)

Confirm the Delta III/ 7501 sensor default values, as the sensor is configured for:

1. Presence Timer dipswitch $\mathbf{X 1} \downarrow \times 2 \mathbf{4}=30$ seconds
2. Safety Relay Output dipswitch $\mathbf{X 7} \downarrow=\mathrm{NC}$
3. Door Learn dipswitch $\mathrm{Y} 5 \boldsymbol{1}=\mathrm{OFF}$
4. Test Input dipswitch $\mathrm{Y} 6 \downarrow=\mathrm{ON}$

Adjusted sensors to comply with current ANSI A156.10 standard. Refer to Tormax T1781 tus User Guide to set up and adjust sensor.

Input - in4 programmed 631 code, NC contact enter 038

User Interface/ FCP Input IN1 (terminals P1,P2) should be programmed for 784 (EXIT)
User Interface/ FCP Input IN2 (terminals P3,P4) should be programmed for 793 (AUTO 2)
Program Automatic 2 opening width to 419

ANSI/ BHMA A156.10

These instructions are for informational purposes, refer to the current version of ANSI/ BHMA A156.10 "American National for Power Operated Pedestrian Doors" standard.

Sliding door systems must be installed, adjusted and inspected for compliance with ANSI/ BHMA.

Important aspects of the installation:

Control mat

- Size of active area and sensitivity.
- Mat Layout/ placement.
- Joining of control mats, trim height.

Sensors

- Pattern size and sensitivity.
- Layout/ placement and location.
- Functionality (Activation, Safety).

Knowing Act

Doors activated by a manual switch must have the switch installed in a location from which the operation of the door can be observed by the person operating the switch. Refer to the latest revision of ANSI/ BHMA A156.10 for specific details for sensor function, time delay and location of Knowing Act switch.

Entrapment

- Closing Speed is one foot per second maximum.
- Break away device(emergency egress) no more than 50 lbf (222 N).
- Closing force no more than 30 lbf (133 N).
- Time delay 1.5 seconds minimum.

Signage
Refer to ANSI/ BHMA for requirements and location.

ANSI/ BHMA A156.10 - SENSOR WALK TEST

\triangle
The walk test should be performed by an AAADM certified inspector to ensure compliance with the ANSI A156.10 standard. Do not leave a door in non-compliance, contact TORMAX or the sensor manufacturer for assistance. The illustrations show sensor patterns on one side of the door for simplicity, patterns exist on both sides of the door. Drawings not to scale.

1) Perform walk test on each side of the door checking sensor pattern size, sensitivity and function of all sensors to ensure conformance with ANSI/ BHMA standard.

\checkmark Passed \times Failed x Initially failed, then passed after adjustment
Installer signature/date \qquad

T-1258 e	Technical Data	
Area of application	iMotion 2301 \& 2401 Slide Door Drive	12859 Wetmore RoadSan Antorio, TX 78247$1-888-685-377$WWW.TORMAXUSA.COM
Release	November 2009	
Use	Technical Specification	

Door Operator Type	iMotion 2301 \& 2401 Slide Door Drive
Drive System	Electromechanical slide door operator with direct drive through AC permanent magnet synchronous motor with external rotor
Control System	iMotion MCU32
Mains Connection	$1 \times 230 / 1 \times 115 \mathrm{VAC}, 50-60 \mathrm{~Hz}, 10 \mathrm{~A}$
Power Consuption	Max. 190 W (For 2301 Slide Door Drive) Max. 310 W (For 2401 Slide Door Drive)
Sensor Power Supply	24 V DC (+0.5-1.5V) 0.75 A (For 2301 Slide Door Drive) 24 V DC (+0.5-1.5V) 1.5 A (For 2401 Slide Door Drive) in battery operation min. 16.5 V
Protective Class of Drive	IP 22
Ambient Temperature	$-4{ }^{\circ} \mathrm{F}$ to $+122{ }^{\circ} \mathrm{F}$
Outputs	24 V DC short circuit proof (within power supply 0.75 A in total) For 2301 Slide Door Drive 24 V DC short circuit proof (within power supply 1.5 A in total) For 2401 Slide Door Drive
CE Approval	CE inkl. RoHS, TÜV, ETL
Standards	DIN 18650, EN 60335-1, EN 61000-6-2, EN 61000-6-3, UL 325
	Note : iMotion 2401 is a category A drive. It may cause radio interferences in living areas. In this case the user can ask for suitable measures
Durability	Class 3 according to DIN 18650-1 Dec. 2005 $1,000,000$ test cycles with 4,000 cycles per day

For 2301 \& 2401 Slide Door Drives

	PACKAGE WIDTH (foot)	MAXIMUM DOOR WEIGHT (LBS) 2301	MAXIMUM DOOR WEIGHT (LBS) 2401
SINGLE SLIDE	$7^{\prime}-9^{\prime}$	265 lbs	530 lbs
BI - PART	$10^{\prime}-14^{\prime}$	220 lbs	440 lbs
TELESCOPIC SINGLE SLIDE	$7^{\prime}-9 \prime$	176 lbs	265 lbs
TELESCOPIC BI - PART	$10^{\prime}-14^{\prime}$	132 lbs	220 lbs

For larger package width Contact Tormax

Opening speed	$3.9 \mathrm{in} / \mathrm{s}-39.4 \mathrm{in} / \mathrm{s}$
Closing speed	$3.9 \mathrm{in} / \mathrm{s}-39.4 \mathrm{in} / \mathrm{s}$
Force at the tooth belt	$18.4-250$ Foot Pounds (For 2301 Slide Door Drive)
	$29.5-295$ Foot pounds (For 2401 Slide Door Drive)

T-1277 e	Cable Plan	丸ᄎ $\star \star \star$ TORMAX
Area of application	iMotion 2301 \& 2401 Slide Door Drive	59 Wetmore Road
Release	Jan. 2009	1-888-685-3707 www.tormaxusa.com
Use	Wiring Specifications	

No.	Control Cables	Notes	Cable	Length (ft) without screen	Length (ft) with screen
1	Activator/Push-button inside	Stranded wire recommended	4×20 AWG	<95	<328
2	Activator/Push-button outside	Stranded wire recommended	4×20 AWG	<95	<328
3	Key-switch	Stranded wire recommended	2×20 AWG	<95	<328
4	User interface iMotion connected with FCC- connector		Phone ribbon cable 6×26 AWG RJ12, 6P6C	<95	
	User interface iMotion connected with LIN-Adapter		3×23 AWG	<95	<328
5	Input	Stranded wire recommended	$\ldots \times 20$ AWG	<95	<328
6	\ldots	$\ldots \times 20$ AWG	<95	<328	
7	\ldots	Stranded wire recommended	2×20 AWG	<95	<328
8	Message $1 \ldots$	Stranded wire recommended	2×20 AWG	<95	<328
9	Message $2 \ldots$	Stranded wire recommended	3×20 AWG	<328	
10	Mains main switch	Stranded wire recommended		<95	
11	Mains socket				

T-1259 e	Module Documentation Control Unit MCU32-CONU-85-18-A	丸ᄎ $\star \star \star$ TORMAX AUTOMATIC 12859 Wetmore Road San Antonio, TX 78247 1-888-685-3707 www.TORMAXUSA.COM
Area of application	iMotion 2301 and 2401 Slide Door Drives	
Release	November 2009	
Use	Installation and Maintainence	

Purpose

To manage the functions of control system for iMotion 2301 standard and 2401 Heavy duty door door drives

Function

The control unit contains all the necessary control system components for the operation of a sliding door system. It provides the connections and the power supply for the control panel, lock unit, motor unit, battery unit and input / output module. The system configuration is performed through either the control panel MCU32-USIN or through the service software iMotion.


```
Power supply MCU32-FLTR-B 7 Display power supply 24 V / 5 V
2 Voltage selector 230 / 115 VAC 8 Terminal module MCU32-TERM-B
3 Transformer MCU32-TRAF-29-85-A 9 Push-button for opening impulse
4 \text { Power supply module MCU32-PSUP-40-18-C 10 Space for installation of 1 input/output module or 1 relay module}
Fuse 5AT
Base module MCU32-BASE-40-200-A
```


Module Connections

Connectors and terminals may only be connected in the current-free state.

Commissioning

See T-1272.

Component Dimensions

2301 Standard Door Drive

Technical Data

	2301	2401
Mains connection:	115 / 230 V AC, $50-60 \mathrm{~Hz}$	115 / 230 V AC, $50-60 \mathrm{~Hz}$
Power consumption:	8... 190 W	$8 . .310 \mathrm{~W}$
Power supply sensors:	24 V DC / 0.75 A	24 V DC / 1.5 A
Ambient temperature:	$-4^{\circ} \mathrm{F}$ to $+122^{\circ} \mathrm{F}$	$-4^{\circ} \mathrm{F}$ to $+122^{\circ} \mathrm{F}$
Module interfaces:	Motor unit MCU32-MOTU-40-6-A Battery unit MCU32-BATU-24-1-B LIN bus for lock unit MCU32-LOCU-40-7-B LIN bus for input/output module MCU32-INOU-A LIN bus for operating unit MCU32-USIN-7-A RS232 for service software iMotion Config Card MCU32-CONF-...	Motor unit MCU32-MOTU-40-10-A Battery unit MCU32-BATU-24-1-B LIN bus for lock unit MCU32-LOCU-40-7-B LIN bus for input/output module MCU32-INOU-A LIN bus for operating unit MCU32-USIN-7-A RS232 for service software iMotion Config Card MCU32-CONF-...

T-1274 e	Module Documentation Motor Unit MCU32-MOTU-40-6-A	***** AUTOMATIC 12859 Wetmore Road San Antonio, TX 78247 1-888-685-3707 WWW.TORMAXUSA.COM
Area of application	iMotion 2301 \& 2401 Slide Door Drive	
Release	March 2008	
Use	Installation and Maintainence	

Purpose

This motor unit is design for 2301 standard and 2401 Heavy duty door drives.

Functional Principle

The motor unit includes MCU32-MOTR-40-6-A (1) (for standard door drive), MCU32-MOTR-40-10-A (1) (for heavy duty drive) with encoder module MCU32-ENCO-24-16-A (5) and brake module MCU32-BRAK-40-3-A (3).

The synchronous motor is attached with permanent magnet and external rotor, which drives the toothbelt directly. The encoder module rotates the motor and determines the door position. The brake module limits the door speed on power interruption or when the motor unit is disconnected from the control module.

1 Motor
2 Connector MO
3 Brake module
4 Connector M
5 Encoder module
6 Connector ENC
7 Connector POT

Installation

- Connect the motor unit with the base module using the prefabricated motor and encoder cables as shown

Connection Diagram

Commissioning

Programming using FCP use T-1272e

Component Dimensions

T-1265 e	Module Documentation Lock Unit MCU32-LOCU-40-7-B	$\star \star \star \star \star$ TORMAX AUTOMATIC 12859 Wetmore Road San Antonio, Tx 78247 1-888-685-3707 www.tormaxusa.com
Area of application	iMotion 2301, 2401 Slide Door Drive	
Release	September 2009	
Use	Installation and Maintainence	

Purpose

This lock unit is design for 2301 and 2401 slide door drives.It positively locks each SX or X panel.

Functional Principle

The lock unit includes lock module MCU32-LOCK-40-7-B(1) The lock unit recieves control commands for locking and unlocking via LIN bus (2) from the base module .

The operating function depends on the programming of the basic control system. For individual functions see programming table.

1) Lock module MCU32-LOCK-40-7-B
2) LIN -Bus
3) Code switch

Connection Diagram

Installation

Mount the lock unit at a suitable position with the 4 screws and groove blocks in the supporting profile.
On single leaf units the counter bolts are attached to the supporting profile.

LIN Connection

- Cut to length and assemble the LIN connection cable on both ends with a FCC 6-pole plug .

FCC-plug is polarity sensitive.

First connect the LIN cable and FCP to the slide door drive then switch the 110 vAC on.

Commissioning

```
Programming Through FCP See T-1272 e
See programming table for specific lock functions
```


Component Dimensions

Technical Data

Rated voltage of solenoid	12 V DC
Maximum power of solenoid	40 W
Loading of 24 V sensor power supply	100 mA
LIN Interface	FCC $6-\mathrm{Pol}$
Length of all LIN cables:	$<98^{\prime}$ (Foot)
LIN cable length between modules:	$<30 \mathrm{~m}$ with phone ribbon cable $6 \times 0,14 \mathrm{~mm}^{2}$
	$<100 \mathrm{~m}$ with LIN-Bus-Adapter MCU32-LADP-A
Ambient temperature	$-4^{\circ} \mathrm{F} \ldots+122^{\circ} \mathrm{F}$
Interface	MCU32-TERM
	Monitoring for lock 01
	Manual disengagement

T-1268 e	Module Documentation Battery Unit MCU32-BATU-24-1-B	$\star \star \star \star \star$ TORMAX AUTOMATIC 12859 Wetmore Road San Antonio, Tx 78247 1-888-685-3707 www.tormaxusa.com
Area of application	iMotion 2301 \& 2401 Slide Door Drive	
Release	Feb. 2008	
Use	Installation	

Purpose

This battery unit is design to be used on iMotion 2301 or 2401 Slide Door Drives. The module is used for limited time operation of the system and/or for accomplishment of a final motion into a determined position.

Functional Principle

The battery unit includes the batteries MCU32-ACCU-24-1-A and the battery module MCU32-BATT-24-1-B (1).

The batteries store the energy required to continue system operation on power failure. The battery module contains a charging circuit that charges the batteries in the presence of mains power and/or holds them in the charged state. In order to avoid total discharge, the battery can be switched off with a switch.

The operational function depends on the programming of the basic control system. See programming table for programming options.

The wake-up function allows renewed switching on with subsequent door opening after the battery has been disconnested. The function depends on the current charge of the accumulators and necessitates a connected key switch (4).

Connection Diagram

Installation

- Mount the battery unit at the suitable position with screws and groove blocks
- Connect the battery unit with the power supply module as shown in the connection diagram

When connecting the batteries make sure that the polarities are not interchanged and the contacts are not short circuited. A sudden discharge may cause an explosion of the batteries. The constituents are highly poisonous.

Commissioning

The battery module is detected automatically during auto configuration. See Commissioning of the Entire System T-1272e

Component Dimensions

Technical Data

Rated voltage	24 VDC
Maximum power	120 W
Batteries	$2 \times 12 \mathrm{~V} / 1.2 \mathrm{Ah}(52 \times 97 \times 43 \mathrm{~mm})$
Ambient temperature	$32^{\circ} \mathrm{F} \ldots+104^{\circ} \mathrm{F}$
Interfaces	MCU32-PSUP-40-18-C
	MCU32-PSUP-40-36-A

T-1269 e	Module Documentation Power Supply Module	$\star \star \star \star \star$ TORMAX AUTOMATIC 12859 Wetmore Road San Antonio,Tx 7824 1-888-685-3707 www.tormaxusa.com
Area of application	iMotion 2301 \& 2401 Door Drives	
Release	April 2008	
Use	Installation and Maintainence	

Purpose

To provide intermediate circuit voltage and the 24 V sensor voltage from the transformer or the battery unit.

Installation

\triangle
The module must be protected against electrostatic discharge (ESD) when touching it.

- Fasten the printed circuit board in the power-free state at the designated points.
- Switch on the power supply only after all surrounding MCU32 modules are connected.

Module Connections

Module Connections

Technical Data

	2301	2401
Rated voltage (input, from transformer) Nominal power (input, from transformer) Rated Voltage (input,from ext.DC voltage) Nominal Power (input, from ext.DC Voltage) Rated voltage (input, from battery module) Maximum power (input, from battery module) Maximum current 24 V sensor power supply (output) Ambient temperature Dimensions length x width x height (mm) Interfaces	$\begin{aligned} & 25 \mathrm{~V} \mathrm{AC} \\ & 85 \mathrm{VA} \end{aligned}$ 24 V DC 42 V DC 120W 0.75 A $\begin{aligned} & -4^{\circ} \mathrm{F} \text { to }+122^{\circ} \mathrm{F} \\ & 3-1 / 8^{\prime \prime} \times 2-3 / 4^{\prime \prime} \times 1-11 / 16^{\prime \prime} \end{aligned}$ Transformer MCU32-TRAF-29-85-A Battery module MCU32-BATT-24-1-B Base module MCU32-BASE-40-200-A	```25 V AC 250 VA 24 V DC42 V DC 5A 24 V DC 120 W 1.5 A -4}\mp@subsup{}{}{\circ}\textrm{F}\mathrm{ to }+12\mp@subsup{2}{}{\circ}\textrm{F 5-1/8"x2-3/4"x1-11/16"``` Transformer MCU32-TRAF-29-250-A Battery module MCU32-BATT-24-1-B Base module MCU32-BASE-40-200-A

T-1261 e	Module Documentation Base Module MCU32-BASE-40-200-A	
Area of application	iMotion 2301 \& 2401 Slide Door Drive	12859 Wetmore Road
Release	August 2012	1-888-685-3707 www.tormaxusa.com
Use	Installation and maintenance	

Purpose

Control system component for iMotion 1301, 1401 Swing Door Drive and iMotion 2202, 2301, 2401 Sliding Door Drive.

Function

The base module is the central functional control system of the MCU32 module family. The module contains the processor system including a non-volatile (i.e. voltage failure safe) memory for the adjusted values, a 3 -phase converter for the motor and the drivers for the interfaces OUT1-2, PWM, as well as LIN and CAN.

The control system can be programmed by means of the software iMotion Skipper or the user interface MCU32-USIN-7-A. For access to the full function range, the configuration card MCU32-CONF is required. The software of the base module "firmware" can be updated by means of a PC or handheld with iMotion Skipper.

The control system is programmed with the FCP.

Base module MCU32-BASE-40-200-A

1 Connection for encoder MCU32-ENCO-24-16-A
2 Connection for motor MCU32-MOTR-40-... (*)
3 Connection for power supply module MCU32-PSUP-40-... (*)
4 Connection for potentiometer, closed position indicator
5 Push-button SW1 (for starting a download)

6 Slot for configuration card MCU32-CONF-... (*)
7 Display for power supply 24 V and 5 V
8 Beeper
9 Connection for terminal module MCU32-TERM-... (*)
(*) Different versions

Installation

\triangle
The module must be protected against electrostatic discharge (ESD) when touching it.

[^2]
Module Connections

Commissioning

Program using FCP see T-1248

Technical Data

Processor
System monitoring
Ambient temperature
Overheating protection
Dimensions
Module interfaces:

32 bits, 30 MHz
Complies with DIN 18650 requirements
$-4^{\circ} \mathrm{F} . . .+167^{\circ} \mathrm{F}$
for power supply 40 V
7.873x 3.031 inch

MCU32-PSUP
MCU32-MOTU
MCU32-TERM
MCU32-CONF
MCU32-TEBR

T-1264 e	Module Documentation Function Control Panel (FCP) MCU32-USIN-7-A	
Area of application	iMotion 1301, 1401 Operators and 2301, 2401 Drives	12859 Wetmore Road
Release	October 2013	1-888-685-3707 www.tormaxusa.com
Use	Programming and mode selection	

Purpose

Operating and programming of the automatic door with TORMAX iMotion universal processor.
Functional control panel (FCP) MCU32-USIN-7-A

Connection Diagram

Connection Option 2

Connection Option 3

- Switch mains 115 V AC ON after the functional control panel(FCP) is connected.

LIN Connection

- Cut to length and assemble the LIN connection cable on both ends with a FCC 6-pole plug
. FCC plug is polarity sensitive

- First connect the LIN cable and FCP to the 2301 or 2401 Door Drive then switch the 115 VAC on.

Technical Data

Inputs:
Terminal cross section:
Interface
Ambient Temperature:
Dimensions:
LIN cable length:
$2 \times$ Pull up in: 24 VDC / 3 mA, function programmable
$0.5 \mathrm{~mm}^{2}$ (strand or wire)
LIN, FCC 6-Pol
$-4^{\circ} \mathrm{F} . .+122^{\circ} \mathrm{F}$
1.7716 inch $\times 1.7716$ inch

98' Max

T-1360 e	Module Documentation Input / Output Module MCU32-INOU-A	$\star \star \star \star \star$ TORMAX AUTOMATIC 12859 Wetmore Road San Antonio,Tx78247 1-888-685-3707 www.tormaxusa.com
Area of application	iMotion 1301, 1401, 2301, 2401	
Release	January 2010	
Use	Input/Output terminal board	

Purpose

Additional inputs and outputs for automatic door drives with iMotion. Not suitable for time-critical applications such as security or safety functions.

Function

The IO module receives its control commands from the base module via the LIN-Bus (1). The two LIN plugs are identical. Each module must have a unique LIN address which can be set with the code switch (2). The function of the inputs and outputs depends on the programming of the basic control system. See the MCU programming table in the Extranet for the functions.

A self-resetting thermal cut-out protects the control system's 24 V power supply against continuous overload. The thermal cut-out resets itself immediately after the overload is removed.

Connection Diagram

The 24 VDC power supply on this module must not be used as the power supply to sensors.

Installation

The module is installed on the module carrier.

LIN Connection

- Cut to length and assemble the LIN connection cable on both ends with a FCC 6-pole plug (article see TORMAX price list).

The polarity of the FCC-plug is not of importance.

For alternative cable connections via adapter with terminal connection see module documentation LIN-Bus adapter T-1322.

Commissioning

The modules must be coded according to the connection diagram.
The modules are detected automatically when initiating the auto configuration.
See programming table in the manual for input and output functions (021). No functions are programmed as standard.

Technical Data

Inputs:	$4 \times$ Pull up in: $24 \mathrm{VDC} / 5 \mathrm{~mA}$, function programmable
Outputs:	Transistor out: $24 \mathrm{VDC} /$ Continuous current max. 25 mA, function programmable
Input/output reaction time:	with 1 module MCU-INOU-A $<50 \mathrm{~ms}$ with 2 modules MCU-INOU-A $<100 \mathrm{~ms}$
Power supply 24 V :	Total continuous load < 100 mA
Terminal cross section:	$0.14 \ldots 1.5 \mathrm{~mm}^{2}$ (recommended conductor cross section: $0.5 \mathrm{~mm}^{2}$)
LIN Interface	FCC $6-$ Pol
Length of all LIN cables:	$<100 \mathrm{~m}$
LIN cable length between modules:	$98^{\prime} \mathrm{Max}$
Ambient temperature:	$-4^{\circ} \mathrm{F} \ldots+122^{\circ} \mathrm{F}$
Dimensions:	$25 / 32^{\prime \prime}-311 / 16^{\prime \prime}$
Module interface:	MCU32-TERM

AUTOMATIC

Your First Choice for Automatic Doors

TORMAX Sliding Doors

TORMAX Swing Doors
Sales, Installation and Service. Automatic and Manual Doors

[^0]: (

[^1]: * = Default value when factory reset

[^2]: - Fasten the printed circuit board at the predetermined points in the power-free condition.
 - Switch on the power supply only after all surrounding MCU32 modules are connected.

